考研

您现在的位置: 查字典公务员网 >考研 >备考资料 >考研专硕 >2017应用统计考研:统计学重要知识点之主成分和因子分析

2017应用统计考研:统计学重要知识点之主成分和因子分析

2016-07-11 10:07:10
查字典公务员网

下面是查字典公务员考研小编整理的应用统计硕士考研统计学重要知识点,供2017考研的各位考生参考。

主成分和因子分析

1.(1)概念:

在研究实际问题时,往往需要收集多个变量。但这样会使多个变量间存在较强的相关关系,即这些变量间存在较多的信息重复,直接利用它们进行分析,不但模型复杂,还会因为变量间存在多重共线性而引起较大的误差。为能够充分利用数据,通常希望用较少的新变量代替原来较多的旧变量,同时要求这些新变量尽可能反映原变量的信息。主成分分析和因子分子正是解决这类问题的有效方法。它们能够提取信息,使变量简化降维,从而使问题更加简单直观

(2)主成分分析:

研究如何通过少数几个主成分(principal component)来解释多个变量间的内部结构。即从原始变量中导出少数几个主分量,使它们尽可能多地保留原始变量的信息,且彼此间互不相关

主成分分析的目的:数据的压缩;数据的解释。常被用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进行适当的解释。(主成分所代表的原始变量的信息用其方差来表示,一般要求所选主成分的方差总和占全部方差的80%以上就可以了。如果原来的变量之间的相关程度高,降维的效果就会好一些,所选的主成分就会少一些。特征根反映了主成分对原始变量的影响程度,表示引入该主成分后可以解释原始变量的信息。特征根又叫方差,某个特征根占总特征根的比例称为主成分方差贡献率。一般情况下,当特征根小于1时,就不再选作主成分了,因为该主成分的解释力度还不如直接用原始变量解的释力度大。)

(3)因子分析:

与主成分分析类似,它们都是要找出少数几个新的变量来代替原始变量。

不同之处:主成分分析中的主成分个数与原始变量个数是一样的,即有几个变量就有几个主成分,只不过最后我们确定了少数几个主成分而已。而因子分析则需要事先确定要找几个成分,也称为因子(factor),然后将原始变量综合为少数的几个因子,以再现原始变量与因子之间的关系,一般来说,因子的个数会远远少于原始变量的个数。

因子分析可以看作是主成分分析的推广和扩展,但它对问题的研究更深入、更细致一些。实际上,主成分分析可以看作是因子分析的一个特例

简言之,因子分析是通过对变量之间关系的研究,找出能综合原始变量的少数几个因子,使得少数因子能够反映原始变量的绝大部分信息,然后根据相关性的大小将原始变量分组,使得组内的变量之间相关性较高,而不同组的变量之间相关性较低。因此,因子分析属于多元统计中处理降维的一种统计方法,其目的就是要减少变量的个数,用少数因子代表多个原始变量

(4)因子数量的确定

用公因子方差贡献率提取:与主成分分析类似,一般累计方差贡献率达到80%以上的前几个因子可以作为最后的公因子

用特征根提取:一般要求因子对应的特征根要大于1,因为特征根小于1说明该共因子的解释力度太弱,还不如使用原始变量的解释力度大

实际应用中,因子的提取要结合具体问题而定,在某种程度上,取决于研究者自身的知识和经验

(5)主成分分析和因子分析都是多元分析中处理降维的两种统计方法。

只有当原始数据中的变量之间具有较强的相关关系时,降维的效果才会明显,否则不适合进行主成分分析和因子分析

主成分和因子的选择标准应结合具体问题而定。在某种程度上取决于研究者的知识和经验,而不是方法本身

即使得到了满意的主成分或因子,在运用它们对实际问题进行评价、排序等分析时,仍然要保持谨慎,因为主成分和因子毕竟是高度抽象的量,无论如何,它们的含义都不如原始变量清晰

因子分析可以看作是主成分分析的推广和扩展,而主成分分析则可以看作是因子分析的一个特例。目前因子分析在实际中被广泛应用,而主成分分析通常只作为大型统计分析的中间步骤,几乎不再单独使用

近年来,专硕报考率越来越高,专硕越来越受学生的欢迎,但是竞争压力也逐渐变大。为了方便大家学习,查字典公务员考研为广大学子推出2017考研OL乐学 、暑期集训、精品网课系列备考 专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了 解咨询。同时,查字典公务员考研一直为大家推出考研直播课堂,足 不出户就可以边听课边学习,为大家的考研梦想助力!

推荐阅读》》》

查看全部

 推荐文章

 猜你喜欢

 附近的人在看

 推荐阅读

 拓展阅读

 最新资讯

 热门

 相关资讯

 猜你喜欢

返回顶部