安徽公务员

导航
  • 返回首页
  • 国家公务员
  • 地方公务员
  • 事业单位
  • 遴选考试
  • 政法干警
  • 大学生村官
  • 军转干
  • 教师考试
  • 招警
  • 选调生
  • 三支一扶
  • 农村信用社
  • 银行考试
  • 医学考试
  • 会计考试
  • 在职硕士
  • 医疗卫生招聘
  • 社区工作者
  • 考研
  • 公益性岗位
  • 国企招聘
  • 乡镇公务员
var WHITELIST_CUSTOM = [{ name: 'document', /** document 允许使用以下属性或方法*/ properties: ['getElementsByClassName'] }] MIP.watch('i', function (newVal) { var ele2 = MIP.sandbox.document.getElementsByClassName('zg_ksfllb'); var eles = MIP.sandbox.document.getElementsByClassName('zg_lxli'); for(var i=0;i< ele2.length;i++){ if(newVal==i){ ele2[i].style.display = "block"; }else{ ele2[i].style.display = "none"; } } for(var i=0;i< eles.length;i++){ if(newVal==i){ eles[i].classList.add("zg_act1"); }else{ eles[i].classList.remove("zg_act1"); } } })
您现在的位置: 查字典公务员网 >安徽公务员 >备考资料 >行测 >数量关系 >公务员考试中几种典型数的拆分问题

公务员考试中几种典型数的拆分问题

2008-10-26 04:10:44
查字典公务员网

数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,不过像考试中常用的代入法等再在此将不再实用,故掌握方法就变得特别重要。下面我们就和大家分享几种常用的解决此类问题的方法。

1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。

例题1:.三个质数的倒数之和为 ,则a=( )

A.68 B.83 C.95 D.131

解析:将231分解质因数得231=3711,则 + + = ,故a=131。

例题2. 四个连续的自然数和的积为3024,它们的和为( )

A.26 B.52 C.30 D.28 (2004年山东行测真题)

解析:分解质因数:3024=22223337=6789,所以四个连续的四个自然数的和为6+7+8+9=30.

2.已知某几个数的和,求积的最大值型:

基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号)

推 论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。

例题1:3个自然数之和为14,它们的的乘积的最大值为( )

A.42 B.84 C.100 D.120

解析:若使乘积最大,应把14拆分为5+5+4,则积的最大值为554=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会.

Eg2. 例题2:将17拆分成若干个自然数的和,这些自然数的乘积的最大值为( )

A.256 B.486 C.556 D.376

解析:将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为 2=486。

3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的

例题1.:有多少种方法可以把100表示为(有顺序的)3个自然数之和?( )

A.4851 B.1000 C.256 D.10000

解析:插板法:100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了两个部分。而从99个空任意选出两个空的选法有:C992=9998/2=4851(种);故选A。

(注:此题没有考虑0已经划入自然数范畴,如果选项中出现把0考虑进去的选项,建议选择考虑0的那个选项。)

例题2. 学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?

A.1152 B.384 C.28 D.12

解析:本题实际上是想把1152分解成两个数的积。

解法一:1152=11152=2576=3384=4288=6192=8144=9128=1296=1672=1864=2448=3236,故有12种不同的拼法。

解法二:1152= ,用排列组合方法:我们现在就是要把这7个2和两个3分成两部分,每种分配方法对应一种拼法。具体地:

当两个3不挨着时,有4种分配方法,即:(3,3 )、(32,3 )、( )( )

当两个3挨着时,有8种分配方法;略。

故共有:8+4=12种,

这里我们只讨论了数的拆分的几种比较常见的类型及其解题思想,但此类问题决不仅仅局限于此,我们会在以后陆续补充完善。

点击显示

 推荐文章

 猜你喜欢

 附近的人在看

 推荐阅读

 拓展阅读

 最新资讯

 热门

 相关资讯

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •