宁夏公务员

导航
  • 返回首页
  • 国家公务员
  • 地方公务员
  • 事业单位
  • 遴选考试
  • 政法干警
  • 大学生村官
  • 军转干
  • 教师考试
  • 招警
  • 选调生
  • 三支一扶
  • 农村信用社
  • 银行考试
  • 医学考试
  • 会计考试
  • 在职硕士
  • 医疗卫生招聘
  • 社区工作者
  • 考研
  • 公益性岗位
  • 国企招聘
  • 乡镇公务员
var WHITELIST_CUSTOM = [{ name: 'document', /** document 允许使用以下属性或方法*/ properties: ['getElementsByClassName'] }] MIP.watch('i', function (newVal) { var ele2 = MIP.sandbox.document.getElementsByClassName('zg_ksfllb'); var eles = MIP.sandbox.document.getElementsByClassName('zg_lxli'); for(var i=0;i< ele2.length;i++){ if(newVal==i){ ele2[i].style.display = "block"; }else{ ele2[i].style.display = "none"; } } for(var i=0;i< eles.length;i++){ if(newVal==i){ eles[i].classList.add("zg_act1"); }else{ eles[i].classList.remove("zg_act1"); } } })
您现在的位置: 查字典公务员网 >宁夏公务员 >备考资料 >行测 >数量关系 >2017公务员考试行测排列组合题的忍者:隔板法

2017公务员考试行测排列组合题的忍者:隔板法

2016-08-04 09:08:10
查字典公务员网

在公务员考试行测备考过程中,很多考生都感觉有一类问题非常难,这就是排列组合问题,查字典公务员教育专家认为首先是找出题干特征,了解它是什么,考察的形式是什么,解法有哪些。因为排列组合问题的题型较多,考生需要掌握其中最经典的模型隔板法。

隔板法是解决排列组合问题的常用方法,考生们一定要在备考过程中给予足够关注。隔板法是指利用假定的隔板解决相同元素的分配问题。题干标准形式一般表述为把n个相同的元素分给m个不同的对象,每个对象至少1个元素,问有多少种不同的分法,为使每个对象至少分一个,先去掉n个连续相同元素两端的空隙,用隔板的方法在元素之间形成的(n-1)个空隙中插入(m-1)个隔板,则n个相同元素被分为m堆,对应m个不同的对象。其分法数用公式可以表示为。

利用隔板法解决此类问题,题干必须同时满足:所分的元素完全相同;分给不同的对象且必须分完;每个对象必须至少分到1个。若遇到题干所给的部分条件不能满足,比如:至少分多个或者至少分0个,需要转化成至少分一个的标准形式。

例1:12个相同的小球放入编号为1、2、3、4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?

【查字典公务员解析】要将12个小球放入四个盒子中,小球相同,要完全分完且每个盒子里至少有一个,符合隔板法的应用条件。所以解决本题只需要在12个小球形成的11个间隔中插入3个隔板即可,总的放法有=165(种)。

在例1中,题干表述正好是利用隔板法解决排列组合问题的标准形式,但是在实际考试中,题干的表述并不是标准的形式,即某些条件并不满足。在这样的情况下,我们就需要对题干进行转换,变为利用隔板法解题的标准形式。

例2:12个相同的小球放入编号为1、2、3、4的盒子中,每盒可空,问不同的放法有多少种?

【查字典公务员解析】本题是相同元素分配,考虑利用隔板法,但是题干中允许每盒可空,这和利用隔板法解题的条件不符,所以我们不能直接利用隔板法。需要对题干条件进行转化。若我们在四个盒子中先分别放一个小球,这样就可以满足利用隔板法的前提条件,原题就转换为把16个球放到4个盒子里,每个盒子至少要有一个球,不同的放法有多少种?。就是要在16个球形成的15个间隔中插入3块隔板,共有=455种。

在例2中,我们通过给每个盒子里面加上一个小球,转变为每个盒子里面至少有一个小球,这样就可以利用隔板法来解决。

例3:12个相同的小球放入编号为1、2、3、4的盒子中,要求每个盒子中的小球数至少为2个,问不同的放法有多少种?

【查字典公务员解析】题干中要求每个盒子中的小球数至少为2个,这与我们利用隔板法的条件不同,我们需要对其进行转换。我们可以先在每个盒子中先放一个小球,这样还剩8个球,原题就转换为8个相同的小球放入编号为1、2、3、4的盒子中,要求每个盒子中的小球数至少为1个,问不同的放法有多少种?这样我们就可以直接利用隔板法来解决了。就是要在个8球形成的7个间隔中插入3块隔板,共有=35种。

在例3中,要求每个盒子中的小球数至少为2个,我们通过先在每个盒子中放1个,转化为每个盒子中的小球数至少为1个。

以上就是查字典公务员教育专家对隔板法的介绍以及解决思路。考生要想在考场上顺利解决这类问题,就必须要熟记和理解隔板法的利用前提,即所分的元素完全相同、分给不同的对象且必须分完、每个对象必须至少分1个。此外还要熟练掌握此类问题不同问法之间的转换。希望考生们注意总结思路,不断锻炼自己的思维方式。

点击显示

 推荐文章

 猜你喜欢

 附近的人在看

 推荐阅读

 拓展阅读

 最新资讯

 热门

 相关资讯

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •